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Real-world speech learning often occurs in high pressure situations such as trying to communicate in a 
foreign country. However, the impact of pressure on speech learning success is largely unexplored. In this 
study, adult, native speakers of English learned non-native speech categories under pressure or no-pressure 
conditions. In the pressure conditions, participants were informed that they were paired with a (fictitious) 
partner, and that each had to independently exceed a performance criterion for both to receive a monetary 
bonus. They were then informed that their partner had exceeded the bonus and the fate of both bonuses 
depended upon the participant’s performance. Our results demonstrate that pressure significantly enhanced 
speech learning success. In addition, neurobiologically-inspired computational modeling revealed that the 
performance advantage was due to faster and more frequent use of procedural learning strategies. These 
results integrate two well-studied research domains and suggest a facilitatory role of motivational factors in 
speech learning performance that may not be captured in traditional training paradigms. 
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Introduction 
 
Acquisition of non-native speech categories is a difficult learning task in adulthood 

(Iverson et al., 2003). In the real world, speech learning often occurs under pressure-filled 
conditions. For example, a learner might feel pressure to perform well when attempting to 
communicate in a foreign country. Although laboratory training paradigms have yielded 
successful speech learning in adulthood (Bradlow, Akahane-Yamada, Pisoni, & Tohkura, 1999; 
Chandrasekaran, Sampath, & Wong, 2010; Lim & Holt, 2011), to our knowledge the influence of 
performance pressure on speech learning has not been examined directly. An examination of the 
effects of performance pressure on speech learning is the goal of the current research.  

An extensive behavioral, neuropsychological and neuroscience literature using visually 
presented stimuli and laboratory defined category structures suggests that the learning of different 
types of category structures is mediated by different cognitive and neural systems (Ashby, 
Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Ennis, 2006; Ashby & Maddox, 2005, 2010; 
Maddox & Ashby, 2004; Poldrack & Foerde, 2008; Seger, 2008; Smith et al., 2012). A dual-
learning systems (DLS) model has been proposed that argues for a reflexive and a reflective 
learning system. The reflexive system is implicit, procedural, relies on processing in the striatum, 
and is thought to mediate the learning of “information-integration” categories. The reflective 
system is explicit, hypothesis-driven, relies heavily on frontal processes, and is thought to 
mediate the learning of “rule-based” categories. 
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Performance pressure has been shown to have a strong impact on the strategies learners 
use, with performance pressure enhancing processing in the reflexive system at the expense of 
processing in the reflective system (DeCaro, Thomas, Albert, & Beilock, 2011; Maddox & 
Markman, 2010; Markman, Maddox, & Worthy, 2006; McCoy, Hutchinson, Hawthorne, Cosley, 
& Ell, 2014). Thus, pressure enhances reflexive-optimal (information-integration) category 
learning and attenuates reflective-optimal (rule-based) category learning. Unfortunately, all of 
this work uses visually presented stimuli and experimenter constructed category learning 
problems. 

Over the past several years, we have begun to explore the possibility that the DLS 
approach, originally developed in vision, might be applicable to the auditory domain, in particular 
the behaviorally relevant task of speech learning. We recently interpreted speech category 
learning within the DLS framework and across multiple measures provided evidence that speech 
learning is often dominated by a procedurally-based reflexive learning system (Chandrasekaran, 
Koslov, & Maddox, 2014a; Chandrasekaran, Yi, & Maddox, 2014b; Maddox, Chandrasekaran, 
Smayda, & Yi, 2013; Maddox et al., 2014) that relies upon dopamine-mediated reward learning 
in the striatum (Chandrasekaran, Yi, Blanco, McGeary, & Maddox, 2015; Yi, Maddox, Mumford, 
& Chandrasekaran, 2014).  

This article takes the obvious next step by exploring the influence of performance 
pressure on non-native speech learning using Mandarin tones as stimuli. Combining the pressure 
results in the visual domain with the DLS applications in speech, we hypothesize that 
performance pressure should enhance speech category learning by shifting the balance from 
reflective to reflexive learning processes. We test, and find strong support for this prediction 
behaviorally and through the application of neuro-computational models. 

In the next (second) section we elaborate on the dual-learning systems approach 
developed in the visual domain and review the behavioral as well as neuroscience evidence in 
support of these two learning systems. In the third section we review the literature examining 
pressure effects on learning, with nearly all of this work focused on visually present stimuli and 
experimenter defined categories. In the fourth section we review the literature that extends the 
dual-learning systems approach (developed in vision) to the auditory domain (in the context of 
non-native speech learning) and provide evidence to suggest that speech learning is dominated by 
the reflexive learning system. In the fifth section we generate predictions regarding the effects of 
performance pressure on speech learning. We then turn to a presentation of the experimental task 
and results and some final conclusions. 
Dual-Learning Systems in Vision 
  In a typical laboratory-based category learning task the participant is presented with a 
single stimulus on each trial. The participant’s task is to determine which category is associated 
with that stimulus by pressing a button on the computer keyboard. Following their response the 
participant receives corrective feedback. Generally the participant receives several hundred trials 
in the task and learning curves are constructed. An example, of three trials from a visual category 
learning task that uses Gabor patches (sine-wave gratings that vary across trials in bar width and 
orientation) is presented in Figure 1A.  
  Over the past 20 years, a growing body of behavioral research supports the notion that 
human visual category learning is mediated by multiple category-learning systems (Allen & 
Brooks, 1991; Ashby, et al., 1998; Brooks, 1978; Erickson & Kruschke, 1998; Love, Medin, & 
Gureckis, 2004; Maddox & Ashby, 2004; Nosofsky, Palmeri, & McKinley, 1994; Regehr & 
Brooks, 1993). One of the strongest pieces of evidence comes from an examination of the two 
category structures depicted in Figures 1B and 1C, and the learning profiles associated with each 
category structure.  Figure 1B denotes a rule-based category learning problem. Each of the Gabor 
patches in the figure denotes a stimulus to be presented to the participant. The solid black vertical 
line denotes the decision boundary that separates Gabor patches in category A from those in 
category B. The strategy that maximizes accuracy is to place Gabor patches with narrow bars into 
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category A and Gabor patches with wide bars into category B. This is a reflective strategy 
because it involves a strategy that is verbalizable and available to conscious awareness. Figure 1C 
denotes an information-integration category learning problem. Each of the Gabor patches in the 
figure denotes a stimulus to be presented to the participant. The solid black tilted line denotes the 
decision boundary that separates Gabor patches in category A from those in category B. The 
strategy that maximizes accuracy is not easily verbalizable, so an information-integration strategy 
implemented via the reflexive system is most optimal for categorizing these stimuli. If one were 
to attempt to verbalize this rule it would be akin to saying something like “If the orientation 
exceeds the bar width say A, otherwise say B”. Because orientation and bar width are measured 
in different units this is like mixing apples and oranges. Thus, although one could describe the 
optimal strategy as a “rule”, this strategy is not verbalizable, is not available to conscious 
awareness and is qualitatively different from the optimal rule for Figure 1B.  
  Critically, humans show very different learning profiles and introspection when asked to 
solve these tasks. When faced with the verbalizable rule-based task depicted in Figure 1B, 
participants start out near chance and then at some point “get it” and perform nearly optimal.  In 
other words, participants’ learning profile is characterized as a step function. In addition, 
participants are able to describe the strategy that they used explicitly and accurately. When faced 
with the information-integration task depicted in Figure 1C, participants start out at near chance 
and then show gradual, incremental learning. Participants are unable to describe the strategy that 
they used accurately and often say that they went with their “gut” feeling, or “gut reflex”.  In 
other words, learning is more implicit. 
      This qualitative difference in performance led to a number of interesting studies that 
revealed strong empirical dissociations between the learning of these two category structures, and 
a plethora of research examining the neural basis of category learning and the development of 
neurobiologically grounded theories (Ashby, et al., 1998; Filoteo et al., 2005b; Folstein & Van 
Petten, 2004; Keri, 2003; Knowlton & Squire, 1993; Knowlton, Squire, & Gluck, 1994; Maddox 
& Filoteo, 2001, 2005; Nomura et al., 2007; Poldrack et al., 2001; Poldrack & Foerde, 2008; 
Reber, Gitelman, Parrish, & Mesulam, 2003; Seger, 2008; Seger & Cincotta, 2002, 2005, 2006; 
Seger & Miller, 2010; Shohamy et al., 2004; Shohamy, Myers, Onlaor, & Gluck, 2004; 
Zeithamova, Maddox, & Schnyer, 2008). One of the theories of visual category learning that 
specifies the constraints imposed by the underlying neurobiology is the COmpetition between 
Verbal and Implicit Systems (COVIS; Ashby, et al., 1998; Ashby & Maddox, 2005, 2010; Ashby, 
Paul, & Maddox, 2011) model. COVIS postulates two learning systems, one reflective and one 
reflexive1. The reflective system is an explicit learning system in the sense that it formulates and 
tests specific categorization rules using cognitive control processes such as executive attention 
and working memory. The critical neural structures include prefrontal cortex, anterior cingulate, 
and anterior caudate nucleus (Ashby, Ell, Valentin, & Casale, 2005; Ashby & Valentin, 2005; 
Filoteo, et al., 2005b; Lombardi et al., 1999; Monchi, Petrides, Petre, Worsley, & Dagher, 2001; 
Nomura, et al., 2007; Schnyer et al., 2009; Seger & Cincotta, 2006). The reflective system 
mediates rule-based category learning. In contrast, the reflexive system is implicit and procedural 
and learns to associate stimuli lying in different regions of perceptual space with specific motor 
outputs as a result of reinforcement via trial feedback. Learning in this system does not rely on 
working memory and executive attention, and the critical structures are the posterior caudate, 
putamen and the supplementary motor area (SMA) (Aron et al., 2004; Ashby & Crossley, 2011; 
Ashby & Waldron, 1999; Filoteo, Maddox, Salmon, & Song, 2005a; Maddox & Filoteo, 2001, 
2005; Nomura, et al., 2007; Seger & Cincotta, 2002, 2005).  The reflexive system mediates 
information-integration category learning. 

                                                        
1 Recent evidence suggests that a third system, referred to as the perceptual-representation system, can also 
mediate category learning under certain conditions (Casale & Ashby, 2008; Zeithamova, et al., 2008). 
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 COVIS assumes that the reflective and reflexive learning systems compete throughout 
category learning with an initial bias towards reflective dominance. Individuals explicitly test 
category rules and adjust the weight given to that rule depending on its success or failure. The 
success or failure of rules is assessed by explicit processing of the feedback.  After each trial, the 
utility of a particular rule is updated.  Through this method of hypothesis testing, relevant 
decision boundaries are learned.  The explicit nature of the reflective system requires working 
memory and executive attention to remember which rules have been used, to process the success 
or failure of these decision bounds, and to switch between rules.  COVIS posits that an accurate 
reflective system prevents the transfer of control to the striatally-mediated reflexive system 
(Ashby & Maddox, 2010). Learners will therefore continue to use the reflective system until the 
reflexive system is more accurate.  

In comparison, during reflexive learning, a striatal unit implicitly associates an abstract 
cortical–motor response with sensory cells in the sensory association cortex. Learning occurs at 
cortical–striatal synapses. Such synaptic plasticity is enhanced by a dopamine-mediated 
reinforcement signal. The timing of feedback in a categorization experiment is crucial to the 
effectiveness of the reflexive learning system but not the reflective system, while working 
memory and executive attention are critical to learning in the reflective system but not the 
reflexive system. This set of predictions has been tested extensively using experimenter defined 
categories with visually presented stimuli. To examine the influence of feedback timing on rule-
based and information-integration category learning, researchers have manipulated the time 
between the participants response and presentation of the feedback. Because cortico-striatal 
synaptic learning is critical to the reflexive system, delaying the feedback should adversely affect 
information-integration learning since synaptic activity will decay with time. On the other hand, 
because executive attention and working memory can be used to hold a representation of the 
stimulus and response in memory during a delay period, delaying the feedback should not affect 
rule-based learning.  These predictions are supported by the data from several studies (Maddox, 
Ashby, & Bohil, 2003; Maddox & Ing, 2005; Worthy, Markman, & Maddox, 2013). To examine 
the influence of working memory and executive attention on rule-based and information-
integration category learning, researchers have manipulated the availability of these resources 
during task completion or during the time available to process the feedback. Specifically, using 
dual task procedures, or procedures in which the time available to process the feedback is brief, it 
has been shown that both of these manipulations adversely affect rule-based learning but not 
information-integration learning (Filoteo, Lauritzen, & Maddox, 2010; Maddox, Ashby, Ing, & 
Pickering, 2004; Waldron & Ashby, 2001; Zeithamova & Maddox, 2006, 2007). 
Performance Pressure and Dual-Learning Systems in Vision 
  People enter learning environments with trait personalities that affect their learning state 
(e.g., Grimm, Markman, & Maddox, 2012; Grimm, Markman, Maddox, & Baldwin, 2009; 
Higgins, 1997) and learning environments often contain situational factors that affect learning 
(Higgins, 2000). One factor that is often prevalent is performance pressure (Cooper, Worthy, 
Gorlick, & Maddox, 2013; Markman, et al., 2006; Worthy, Markman, & Maddox, 2009a, 2009b). 
Sometimes we feel pressure because completing a task is a team effort and everyone needs to 
“carry their weight”.  
  One popular theory of the pressure-cognition relation is the “distraction hypothesis” 
(Beilock, Bertenthal, McCoy, & Carr, 2004; Beilock & Carr, 2005; Markman, et al., 2006). The 
distraction hypothesis assumes that pressure reduces working memory capacity by delegating 
some capacity to worrying about the pressure. This effectively reduces available working 
memory capacity for task learning. Within the framework of dual-learning systems, and because 
of the proposed competition between systems, this suggests that performance pressure should 
attenuate reflective-learning processes and thus should be detrimental to rule-based category 
learning. Analogously, this suggests that performance pressure should accentuate reflexive-
learning processes and thus should accentuate information-integration category learning. 
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Markman and others (DeCaro, et al., 2011; Markman, et al., 2006; McCoy, et al., 2014) applied 
the distraction hypothesis to rule-based (Figure 1B) and information-integration (Figure 1C) 
visual category learning and found that pressure did in fact attenuate rule-based category learning 
while accentuating information-integration category learning. The goal of the current study is to 
explore the effects of performance pressure on non-native speech learning. Before we can do that 
though, we need to determine the viability of applying dual-learning systems in the auditory 
domain. We address that in the next section. 
Dual-Learning Systems in Audition: Speech Learning in Adulthood is Reflexive 

One exciting possibility that we and others are beginning to explore is the possibility that 
the dual-learning systems approach developed in vision might apply fairly directly to the auditory 
domain (Chandrasekaran, et al., 2014a; Chandrasekaran, et al., 2014b; Holt & Lotto, 2008, 2010; 
Maddox & Chandrasekaran, 2014). In a recent review, we showed that the brain regions 
associated with auditory processing are interconnected with the brain regions associated with 
reflective and reflexive category learning suggesting that the neurobiology associated with 
COVIS is plausible in the auditory domain (Chandrasekaran, et al., 2014a). We have also begun 
to explore some of the cognitive processing correlates of auditory reflective and reflexive 
category learning. In one study, Maddox, Ing and Lauritzen (2006) examined reflective-optimal 
and reflexive-optimal category learning using Gabor patches (i.e., frequency and orientation) as 
visual stimuli and compared it with reflective-optimal and reflexive-optimal category learning 
using frequency and duration of a tone as auditory stimuli. Importantly, the category structures 
(reflexive- or reflective-optimal) remained the same across the visual and auditory applications; 
only the specific dimensions changed (from frequency and orientation of a Gabor patch in vision 
to frequency and duration of a tone in audition). Participants showed similar learning profiles 
across the visual and auditory versions of the reflective-optimal and reflexive-optimal tasks, 
suggesting that similar mechanisms were in place (see also, Smith et al., 2014).  In a second test, 
we examined whether individual differences in working memory capacity were predictive of 
individual differences in reflective-optimal and reflexive-optimal non-speech auditory category 
learning using simple auditory tones that varied in frequency and duration. In line with the vision 
work (DeCaro, Thomas, & Beilock, 2008; Tharp & Pickering, 2008), we found that a strong 
positive correlation between working memory capacity and reflective-optimal learning with these 
auditory stimuli, but no correlation between working memory capacity and reflexive-optimal 
learning with these auditory stimuli (Chandrasekaran, et al., 2014a). 
  This work with simple auditory tones that vary in frequency and duration is important, 
but one advantage of the auditory domain is that it is rich with natural category learning problems 
such as the adult learning of non-native speech categories. Non-native speech category learning is 
an excellent starting point for applying theoretical approaches developed in vision to naturalistic 
problems in audition. Non-native speech category learning is one of the most difficult human 
category learning problems and involves taking multidimensional and highly variable acoustic 
signals and parsing them into discrete phonological representations. Not all non-native speech 
categories are difficult to learn in adults, but some categorical distinctions (e.g. /r/ vs. /l/ in 
Japanese listeners, tone categories in non-tone language speakers) are known to be challenging 
(Bradlow, Pisoni, Akahane-Yamada, & Tohkura, 1997; Lively, Pisoni, Yamada, Tohkura, & 
Yamada, 1994; Wang, Jongman, & Sereno, 2003a; Wang, Spence, Jongman, & Sereno, 1999). 
Why are these categorical distinctions difficult to learn? Several reasons have been proposed. 
These include the possibility of interference caused by existing long-term stored representations 
of native speech categories (Best & Tyler, 2007) as well as interference as a consequence of a 
‘warped’ auditory-perceptual space (Francis, Ciocca, Ma, & Fenn, 2008). Laboratory-based 
training in adults has been shown to be successful in ameliorating difficulties in acquiring new 
tone categories (Chandrasekaran, et al., 2014b; Maddox, et al., 2014; Wang, et al., 2003a; Wang, 
Sereno, Jongman, & Hirsch, 2003b; Wong & Perrachione, 2007). Training paradigms that have 
used ‘high variability’ training approaches have been largely successful in improving tone 
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category learning (Wang, et al., 2003a; Wang, et al., 2003b) . The thought behind this approach is 
that high-variability training results in robust category representations that are largely resistant to 
talker variability. Specifically, they may aid orienting the focus of attention to relevant 
dimensions, which show less variability across talkers. In addition to high-variability training, 
prior approaches examine tone learning have used trial-by-trial feedback to allow participants to 
monitor errors and learn from prior trials (Chandrasekaran, et al., 2015; Smayda, Chandrasekaran, 
& Maddox, 2015). In the proposed training paradigm, we employ elements of both these 
approaches (high-variability training and trial-by-trial feedback) 
The multidimensional and highly variable (due to talker variability) characteristics of speech 
signals make speech learning a ‘difficult’ categorization problem, especially for individuals 
learning novel speech categories in adulthood (Bradlow & Bent, 2008). This means that 
generating and testing hypotheses can be resource-intensive. Since the reflective system is 
dependent on working memory and attention, generating rules/hypotheses for multiple 
dimensions may not be efficient. Further, the redundancy and variability of cues available during 
speech perception prevents a simple one-to-one mapping of cues to categories. These suggest that 
reflexive learning may be most optimal for speech categories. Our hypothesis is therefore that 
speech learning is reflexive-optimal.  
  Several lines of evidence support this claim but we review two that are most relevant to 
the present discussion. First, in a recent behavioral dissociation study, we (Chandrasekaran, et al., 
2014b) showed that delaying the presentation of feedback impairs non-native speech category 
learning using the same Mandarin tone learning task used in the present study (described in detail 
below). As outlined above, delaying feedback interferes with the timing of dopamine release 
relative to cortico-striatal synaptic activation, reducing the effectiveness of the association of 
stimulus-response with reward (Maddox, et al., 2003; Maddox & Ing, 2005). In this same study 
we also showed that rich, informational, ‘full’ feedback that provides the correctness of the 
response on each trial as well as information about which category was present attenuates 
Mandarin tone learning. Full feedback promotes the generation and testing of rules that are 
critical to reflective learning but disrupts the transfer of control to the reflexive system (Maddox, 
Love, Glass, & Filoteo, 2008). Second, in a recent imaging study, we showed that greater final 
block accuracy and greater use of reflexive strategies, as determined from computational 
modeling (described in detail in the Results section), were associated with increased activation in 
the putamen (a sub-structure within the striatum) that is a central brain structure within the 
reflexive system (Yi, et al., 2014). Taken together, these data suggest that non-native speech 
category learning, at least with Mandarin tones, is mediated by the reflexive learning system. 
Performance Pressure and Mandarin Tone Learning: Predictions 

The visual category learning literature suggests that pressure attenuates reflective-optimal 
visual category learning and enhances reflexive-optimal visual category learning via a mechanism 
that reduces available executive function resources (DeCaro, et al., 2011; Markman, et al., 2006; 
McCoy, et al., 2014). Recent work suggests that Mandarin tone learning is reflexive-optimal. 
Thus, we predict that performance pressure will enhance non-native speech category learning. We 
tested this hypothesis by having adult, native speakers of American English learn to classify 
Mandarin tones into one of four linguistically-relevant categories under performance pressure or 
no pressure. In addition to simple measures of accuracy, we utilized a neurobiologically-inspired 
computational modeling approach derived for dual-learning systems theory that provides a 
window onto the nature of learning strategies that is not available through an examination of 
simple performance measures such as accuracy (Chandrasekaran, et al., 2014a).   

Experiment 
Adult native speakers of American English were trained to learn Mandarin tone 

categories with feedback and multiple talkers. Mandarin Chinese has four tone categories that 
differ primarily on the basis of pitch pattern described phonetically as ‘high-level’ (tone 1, T1), 
‘low-rising’ (tone 2, T2) , ‘low-dipping’ (tone 3, T3), and ‘high-falling’ pitch patterns (tone 4, 
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T4), respectively. In Mandarin, tone variation within the syllable (for example, /ma/) can change 
word meaning (ma1 ‘mother’ [T1], ma2 ‘hemp’ [T2], ma3 ‘horse’ [T3], ma4 ‘scold’ [T4]),), 
making the tonal distinction as phonetically salient as vowels or consonants. Two dimensions 
(pitch height and pitch direction) serve as primary cues in categorizing tones (Gandour & 
Harshman, 1978). Although these primary cues explain a large amount of variance per 
multidimensional scaling studies (Chandrasekaran, Gandour & Krishnan, 2007; Chandrasekaran, 
Sampath & Wong, 2010; Francis, Ciocca, Ma, & Fenn, 2008), it is important to note that there are 
several other cues that may aid in tone categorization. For example, Whalen and Xu (1992) 
showed that accurate classification is possible on the basis of amplitude contour and duration (in 
the absence of pitch-related cues).  
 Participants were randomly assigned to one of three experimental conditions: a no-
pressure control condition, or one of two performance pressure conditions. The pressure 
conditions differed only in the target performance level. Performance pressure influences 
behavior when the target performance level is not too easy and not too hard (Maddox & Markman, 
2010; Markman, et al., 2006). Average performance in our previous work reached asymptote at 
65-70% accuracy (Chandrasekaran, et al., 2014a). Thus, we examined the effects of performance 
pressure across two conditions: a target performance level of 65% accuracy in the final block 
(P65), and a target performance level of 70% in the final block (P70). Including two target 
performance levels tests the generality of performance pressure effects. 

Method 
Participants 

Seventy-five participants were recruited using flyers and internet advertisements, were 
paid $8 for their participation, and were randomly assigned to three groups. This sample size was 
based on previous work from our lab, and data collection stopped once 75 participants had been 
tested. Since music training has been shown to enhance speech category learning (Lee & Hung, 
2008), individuals with six years or more of continuous musical training at any time in life were 
not allowed to complete the study, as well as those with hearing loss or any significant exposure 
to tone languages. Participants were divided into the P65 (N = 22), P70 (N = 24), and the no-
pressure control (N = 29) condition. Stimuli were presented at comfortable supra-threshold levels. 
Participants who did not reach the learning criterion of 30% (chance = 25%) during the final 
block of trials were excluded from the final analysis: P65 (N = 2), P70 (N = 3), and no-pressure 
control (N = 3). This research was approved by the University of Texas at Austin IRB. 
Stimulus Characteristics  

Stimuli consisted of natural native exemplars of the four Mandarin tones: tone 1 (T1), 
tone 2 (T2), tone 3 (T3), and tone 4 (T4), in the context of five monosyllabic Mandarin Chinese 
words (bu, di, lu, ma, and mi), produced in citation form by native speakers (N = 4; 2 f) of 
Mandarin Chinese originally from Beijing. The five syllables also exist in the American English 
inventory, circumventing the need to learn phonetic structures additional to the tone distinction. 
By using different segments and multiple talkers, our aim was to expose learners to variability 
inherent in natural language. Stimuli were RMS amplitude and duration normalized (70 dB, 0.4 s) 
(Perrachione, Lee, Ha, & Wong, 2011) using the software Praat (Boersma & Weenink, 2015). 
The stimuli were rated as highly natural and accurately identified (>95%) by five native speakers 
of Mandarin. Behavioral studies as well as multidimensional scaling analyses have shown that 
dimensions related to pitch, especially height and direction, are used primarily to distinguish tone 
categories (Francis, et al., 2008). A scatter-plot of the 80 stimuli (4 tones x 4 talkers x 5 words) in 
the pitch height-pitch direction space is displayed in Figure 2A. Scatter-plots of the 40 stimuli 
spoken by a two male and two female speakers are displayed in Figures 2B and 2C, respectively.  
Procedure 

Participants were asked to give informed consent and were seated at a computer in an 
experimental testing room. All participants were told that they were going to be presented with a 
speech sound on each trial and that their task was to categorize that sound into one of four 
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categories by pressing one of four buttons labeled 1, 2, 3, and 4. Participants were instructed that 
high levels of accuracy were possible but that the task would be difficult at first. Participants were 
informed that they would receive corrective feedback on each trial. Feedback was presented for 
1000 ms on the computer screen and consisted of the word “Correct.” or “No.” followed by the 
label of the tone that was actually presented. For example, on a correct T2 trial the feedback 
display was as follows: “Correct, that was a category 2”. On an incorrect response trial where T3 
was the correct response the feedback display was as follows: “No, that was a category 3”. A 1-s 
ITI followed the feedback. Participants listened to each of the 80 unique stimuli (4 tone categories 
X 5 syllables X 4 talkers) once in each block in a random order, and completed a total of six 
blocks of training.  

Participants in the P65 and P70 conditions were given additional instructions that were 
modeled directly after those from a number of other published studies (Markman, et al., 2006). 
Participants were informed that they had a chance to earn an extra $8 monetary bonus for good 
performance. Participants were informed that they would earn points for correct responses and 
that each correct response would increment a point meter on the right side of the screen.  In the 
P65 and P70 conditions, progress was tracked with a black, 720 pixel tall point meter, 
which vertically filled with green pixels as subjects categorized tones.  With each correct 
response, the meter was vertically filled by 9 pixels.  The point meter remained 
unchanged following an incorrect response.  The bonus criterion was indicated by a line 
through the point meter that said “Bonus”, and was set at 468 pixels, or 65% of the total 
possible pixels, for the P65 condition and 504 pixels, or 70% of total possible pixels, for 
the P70 condition. Participants were informed that they must exceed the “bonus” line on the 
point meter to be eligible for the bonus, and that they must exceed this in the final block of trials, 
although they were not informed of the number of blocks to complete. Critically, participants 
were then informed that they had been paired with a (fictitious) partner, and that each had to 
complete the task and each had to independently exceed a performance criterion in order for both 
to receive the monetary bonus. They were informed that should one of them not exceed the 
performance criterion then neither would receive the bonus. The participant was then informed 
that their partner had just completed the task and had exceeded the performance criterion. At this 
point each participant was asked to rate on a 7 point scale: “How much pressure do you feel to 
perform well on this task?". In the no-pressure control condition, no instructions pertaining to the 
monetary bonus or the fictitious partner2. 

Results 
Pressure Manipulation Check 

The average perceived pressure ratings were 3.08, 3.74, and 4.43 in the no-pressure 
control, P65, and P70 conditions, respectively [95% CI: 2.353, 3.800 (Control); 2.891, 4.583 
(P65); 3.624, 5.234 (P70)]. As expected, the pressure manipulation led to an increase in perceived 
pressure [F(2, 63) = 3.121, p = .05, partial η2 = .090]. Post hoc analyses suggested that the 
perceived pressure in the P70 condition was significantly higher than that in the control condition 
(p = .015), but the perceived pressure in the P65 condition was not significantly higher than that 
in the control condition (p = .241). The perceived pressure in the P65 and P70 conditions did not 
differ (p = .251].  

                                                        
2 Although the control and pressure procedures outlined here are standard in the field, it is the case that the 
pressure condition includes a monetary bonus for good performance that is not included in the control 
condition. In a small scale pilot study, we collected additional data from the control condition (N = 10) and 
a control condition that included a monetary bonus for obtaining 70% correct (N = 21). We found a small 
1% performance advantage in the control with bonus condition whereas the P70 condition advantage was 
6% (presented in the Results). This suggests that the presence of an incentive is not driving the 
performance advantage in the pressure conditions. 
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Proportion Exceeding Target Performance Criterion 
Participants in the pressure conditions were required to meet a target performance level in 

the final block in order to earn a bonus for them and their (fictitious) partner. In the P65 condition, 
this target was associated with a proportion correct of .65 in the final block. In the P65 condition, 
65% of participants reached the target performance level. Although no performance criterion was 
operative in the no pressure control condition, we calculated the percentage of participants whose 
proportion correct in the final block reached .65. Whereas 65% of participants reached this goal 
in the P65 condition, only 46% of participants reached the same criterion in the no pressure 
condition. In the P70 condition, 62% of participants reached the target performance level of .70 
proportion correct in the final block. This was compared with only 42% of participants in the no 
pressure condition who reached the same criterion. Thus, approximately 20% more participants in 
each of the pressure conditions, reached the relevant performance criterion as compared with 
participants in the no pressure condition. Even so, a chi-square test on the Control vs. P65 [χ2(1) 
= 1.275, p=.25] and on the Control vs. P70 frequencies were non-significant [χ2(1) = 1.785, 
p=.18]. 
Accuracy Results 

Figure 3 shows the learning curves across the control, P65 and P70 conditions. Learning 
performance difference across conditions was assessed using a mixed effects modeling analysis 
with binomial logit link, using the lme4 package implemented in R (Bates, Maechler, & Bolker, 
2012). The dependent variable was trial-by-trial accuracy outcome (correct vs. incorrect: 
reference level) for each participant. The fixed effects were the between-subjects pressure 
condition (P70, P65 and no-pressure: reference level), trial number (1 to 480; mean-centered and 
divided by 100), and their interaction term. The most complex random effects structure as 
justified the data was by-subject and by-item random intercepts (p < 2.2 x 10-16):  

Outcome ~ Condition * Trial + (1 | Subject) + (1 | Item) 

First, we looked at the simple effect of trial on logit odds of producing an accurate 
response. A positive estimate would indicate that the accuracy increased over successive trials, 
whereas a negative estimate would indicate the opposite. As the no-pressure group served as the 
reference level, the magnitude of the trial effect would pertain to the learning rate in the no-
pressure group. The trial effect was significant, b = 0.003, SE = 1.5 × 10-4, z = 20.36, 95% CI 
[0.003, 0.003], p < 2 x10-16, indicating that accuracy increased over time for the no-pressure 
group. Next, we looked at the trial by condition interaction effects, which would indicate whether 
the learning rate was different from that of the no-pressure group. The trial by P70 condition 
interaction was positive significant, b = 7.1 × 10-4, SE = 2.3 × 10-4, z = 3.09, 95% CI [2.64 × 10-4, 
1.2 × 10-3], p = .002, indicating that the learning rate was higher for the P70 condition than for the 
no-pressure control condition. The trial by P65 condition interaction was not significant, b = 2.7 × 
10-4, SE = 2.3 × 10-4, z = 1.19, 95% CI [-1.8 × 10-4, 7.3 × 10-4], p = 0.233, suggesting that the 
learning rate for the P65 condition was not different from the no-pressure control condition. Next, 
we looked at the condition simple effects, which would indicate the degrees to which accuracies 
in the P70 and P65 conditions differed to those in the no-pressure condition. As the trial numbers 
were mean-centered, the inference would apply to the 240th trial, which is the midpoint in the 
course of learning. The P70 condition effect was not significant, b = 0.136, SE = 0.281, z = 0.483, 
95% CI [-0.415, 0.686], p = .629, and the P65 condition effect was also not significant, b = 0.23, 
SE = 0.285, z = 0.81, 95% CI [-0.327, 0.788], p = .418, suggesting that learning performance in 
the two pressure groups did not significantly differ with the no-pressure group at the midpoint of 
the learning task. The intercept, which coded how much the logit odds of producing a correct 
response in the no-pressure condition at the midpoint in learning differed from 0 (equivalent to 
50% probability), was not significant, b = -0.35, SE = 0.201, z = -1.74, 95% CI [-0.743, 0.043], p 
= .081. Since the chance level for each trial is 25%, we did not consider the implications of the 
intercept to be important. 
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Because the previous analysis did not provide a direct comparison between the two 
pressure conditions, an additional analysis was performed without the no-pressure condition. The 
design was identical with trial as a fixed effect and condition as another (P70 vs. P65: reference 
level. The trial effect was significant, b = 0.003, SE = 1.8 × 10-4, z = 19.22, 95% CI [0.003, 0.003], 
p < 2 x10-16, replicating the positive learning rate in the P65 condition. The trial by P70 condition 
interaction was marginally significant, b = 4.4 × 10-4, SE = 2.5 × 10-4, z = 1.77, 95% CI [-4.6 × 
10-5, 9.2 × 10-4], p = .076, presenting a trend in which the learning rate was higher for the P70 
condition than for the P65 condition. The P70 condition effect was not significant, b = -0.095, SE 
= 0.291, z = -0.327, 95% CI [-0.665, 0.475], p = .743, suggesting that the performance did not 
differ in the midpoint in learning. The intercept was not significant, b = -0.119, SE = 0.221, z = -
0.537, 95% CI [-0.551, 0.314], p = .591.  
Computational Modeling 
 The accuracy-based analyses suggested a performance advantage for individuals under 
pressure. To investigate the processing locus of this performance pressure advantage, we applied 
computational modeling techniques that provide the necessary window onto cognitive processing. 
We predicted that the performance advantage was due to a faster shift from reflective to reflexive 
strategy use in the pressure conditions. 

Computational Modeling Details. We fitted a series of decision-bound models on a 
block-by-block basis at the individual participant level because of problems with interpreting fits 
to aggregate data (Maddox, 1999). We assumed that the two-dimensional space (pitch height vs. 
pitch direction) displayed in Figure 2A accurately describes the perceptual representation of the 
stimuli. Based on the results from our earlier work (Chandrasekaran, et al., 2014a) that showed 
that participants can categorize by the sex of the speaker (male/female) with greater than 95% 
accuracy with no feedback, we also assumed that participants applied category learning strategies 
separately to the male (Figure 2B) and female (Figure 2C) perceptual spaces. Note that as long as 
the major dimensions are known, these modeling procedures can be applied to any type of speech 
category structure so this offers an exciting new approach to the study of speech category 
learning. As discussed earlier, there are several secondary cues to tone categorization that are not 
examined here. However, with the goal of understanding the locus of the pressure effect on 
speech learning, we use the 2-D space as a starting point in estimating the perceptual space in 
non-native listeners. Note that several prior studies have shown that this two-dimensional space 
(pitch height and direction) is capable of explaining significant variance in native English 
speakers discriminating tone categories (Chandrasekaran, Gandour & Krishnan, 2007; 
Chandrasekaran, Sampath & Wong, 2010; Francis, Ciocca, Ma, & Fenn, 2008).  

Here, we provide a brief description of each model, as well as an interpretation of the 
model results. Details are available in numerous previous publications (Chandrasekaran, et al., 
2014a). Each model assumes that decision-bounds were used to classify stimuli into each of the 
four Mandarin tone categories (T1, T2, T3, or T4). We applied three classes of models: reflexive, 
reflective and random responding. The first class is computational models of the reflexive 
procedural learning system. This is instantiated with the Striatal Pattern Classifier (SPC) (Ashby 
& Waldron, 1999; Maddox, Molis, & Diehl, 2002). The SPC is a computational model whose 
processing is consistent with what is known about the neurobiology of the procedural-based 
category learning system thought to underlie reflexive-optimal classification performance (Ashby, 
et al., 1998; Ashby & Ennis, 2006; Maddox, et al., 2002; Nomura, et al., 2007; Seger & Cincotta, 
2005; Yi, et al., 2014). The second class is reflective, rule-based and instantiate hypothesis-testing 
strategies, such as the application of uni-dimensional or conjunctive rules. These are verbalizable 
strategies. The third model is a random responder model that assumes that the participant guesses 
on each trial. The models were fit to the Mandarin tone category learning data from each trial by 
maximizing negative log-likelihood. In brief, the goal of maximum likelihood parameter 
estimation is to identify the set of model parameter for which the observed probability of 
responding tone categories T1 – T4 across a set of trials is as similar as possible to the predicted 
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probability of responding tone categories T1 – T4 from the model. To determine the best fitting 
model, the maximum negative log-likelihood value was converted into an Akaike’s Information 
Criterion (AIC) value (Akaike, 1974).  For each model, i, AIC is defined as: 

𝐴𝐼𝐶𝑖 =  2𝑙𝑛𝐿𝑖 + 2𝑉𝑖  
where Li is the maximum likelihood for model i, and Vi is the number of free parameters in the 
model.  Notice that AIC penalizes models with more free parameters.  Smaller AIC values 
indicate a better fit to the data. The best fitting model was defined as the model with the smallest 
AIC value. Another goodness-of-fit measure that is based on maximum likelihood is called the 
Bayes Information Criterion (BIC). We replicated all of the model fits with BIC and none of the 
patterns in the data changed. Thus, we focus the presentation below on AIC. We provide the 
specifics of each model in the next section.  
 Striatal Pattern Classifier. The SPC assumes that stimuli are represented perceptually in 
higher level auditory areas, such as the superior temporal gyrus. Because of the massive many-to-
one (approximately 10,000-to-1) convergence of afferents from the primary and secondary 
sensory cortices to the striatum (Ashby & Ennis, 2006; Wilson, 1995), a low-resolution map of 
the perceptual space is represented among the striatal units. Within the auditory domain, it is well 
known that there are direct projections from secondary auditory areas such as superior temporal 
gyrus and supratemporal plane to the caudate (Arnauld, Jeantet, Arsaut, & Desmotes-Mainard, 
1996; Hikosaka, Sakamoto, & Usui, 1989; Yeterian & Pandya, 1998). During feedback-based 
learning, the striatal units become associated with one of the category labels so that, after learning 
is complete, a category response label is associated with each of a number of different regions of 
perceptual space. In effect, the striatum learns to associate a response with clumps of cells in the 
auditory cortex. In fitting behavioral data we utilize a computational version of the SPC that is 
inspired by what is known about the neurobiology of the striatum. The version of the SPC that we 
fit to data assumes that there is one striatal “unit” in the pitch height-pitch direction space for 
each category, and a single “noise” parameter that represents the noise associated with the 
placement of the striatal units. Stimuli are assigned probabilistically (because of the noise in the 
striatal unit placement) into the category with the nearest striatal unit. Responses from a 
hypothetical participant using the SPC are displayed in Figure 2D. 

Conjunctive Rule-Based Model. Rule-based models assume that the participant generates 
hypotheses regarding category assignment. Rule generation, selection, storage and application 
recruit a network of brain regions including the anterior cingulate, head of the caudate nucleus 
and the prefrontal cortex (Ashby, et al., 1998; Chandrasekaran, et al., 2014a). A conjunctive rule-
based model that assumes that the participant sets two criteria along the pitch direction dimension 
and one criterion along the pitch height dimension was applied to the data. The model assumes 
that the two criteria along the pitch direction dimension are used to separate the stimuli into those 
that are of low, medium or high pitch direction. Low pitch direction items are classified into tone 
category 4 (T4) and high pitch direction items are classified into tone category 2 (T2). If an item 
is classified as having medium pitch direction, then the pitch height dimension is examined. The 
single criterion along the pitch height dimension is used to separate the stimuli into low and high 
pitch height. Stimuli that have medium pitch direction and low pitch height are classified into 
tone category 3 (T3) and medium pitch direction items of high pitch height are classified into tone 
category 1 (T1). Responses from a hypothetical participant using a conjunctive strategy are 
displayed in Figure 2E. 

Uni-dimensional Rule-Based Model. A uni-dimensional height rule-based model that 
assumes that the participant sets three criteria along the pitch height dimension was also applied 
to the data. The model assumes that the three criteria along the pitch height dimension are used to 
separate the stimuli into those that are of low, medium-low, medium-high or high pitch height, 
with each of these being associated with one of the four tone categories. Notice that this model 
completely ignores the pitch direction dimension. Although 24 versions of the model are possible 
given four category labels, some are highly unrealistic (e.g., a model that assumes that tone 
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category 1 (T1) was the lowest in pitch height). We examined the eight most reasonable variants 
of the model. A uni-dimensional direction rule-based model that assumes that the participant sets 
three criteria along the pitch direction dimension was also applied to the data. The model assumes 
that the three criteria along the pitch direction dimension are used to separate the stimuli into 
those that are of low, medium-low, medium-high or high pitch direction with each of these being 
associated with one of the tone categories. Notice that this model completely ignores the pitch 
height dimension. We examined the two most reasonable variants of the model. Responses from a 
hypothetical participant using a uni-dimensional strategy along pitch height are displayed in 
Figure 2F, and responses from a hypothetical participant using a uni-dimensional strategy along 
pitch direction are displayed in Figure 2G. 

Random Responder Model. The random responder model assumes a fixed probability of 
responding tone 1, tone 2, tone 3, and tone 4 but allows for response biases. The model has three 
free parameters to denote the predicted probability of responding “1,” “2,” or “3” with the 
probability of responding “4” equal to one minus the sum for the other three categories.  
Computational Modeling Results. The accuracy-based analyses provide support for the prediction 
that performance pressure leads to enhanced speech learning. We hypothesize that this is due to 
the fact that pressure leads to enhanced reflexive processing. We argue that this can come in two 
forms. First, pressure should enhance reflexive processing by speeding the transition from 
reflective to reflexive processing. As a direct test of this hypothesis we determined the first block 
of trials for which the SPC (a model of reflexive processing) provided the best fit of the data. If 
performance pressure speeds the transition from reflective to reflexive processing then the first 
block of trials for which the SPC fits best should occur sooner in learning (i.e., during an earlier 
block of trials) than in the no pressure control condition. Second, once the transition from 
reflective to reflexive processing occurs reflexive processing should remain stable. As a direct 
test of this hypothesis we determined the total number of block of trials for which the SPC 
provided the best fit of the data. If individuals under performance pressure use reflexive strategies 
sooner and with more regularity, then they should use reflexive strategies in more blocks of trials 
than individuals in the no pressure control condition. Data from these two measures are displayed 
in Figure 4 (caption includes 95% confidence intervals).  

Comparing across all three conditions, a one-way ANOVA on the first block of trials best 
fit by the SPC revealed a significant effect of condition [F(2,64) = 5.114, p = .009, partial η2 = 
0.138]. Post hoc tests using a Bonferroni correction for multiple comparisons suggested that a 
reflexive strategy: (a) was used significantly sooner (p = .012) in the P65 condition (mean = 2.65) 
than in the no-pressure control condition (mean = 4.50) [t(44) = 2.954, p = .005, partial η2 = 
0.166], (b) was used marginally significantly sooner (p = .063) in the P70 condition (mean = 
3.05) than in the no-pressure control condition, and (c) showed no difference between the P65 
and P70 conditions in first block best fit by the SPC (p = 1.00). A comparison of the no-pressure 
control with the aggregate of the two pressure conditions was significant [F(1,65) = 9.953, p 
= .002, partial η2 = 0.133]. Next we conducted a one-way ANOVA on the total number of blocks 
best fit by the SPC and found a significant effect of condition [F(2,64) = 3.180, p = .048, partial 
η2 = 0.090]. Post hoc tests using a Bonferroni correction for multiple comparisons suggested that 
a reflexive strategy: (a) was used marginally significantly more often (p = .099) in the P65 
condition (mean = 3.35) than in the no-pressure control condition (mean = 2.08), (b) was not used 
significantly more often (p = .119) in the P70 condition (mean = 3.29) than in the no-pressure 
control condition, and (c) showed no difference between the P65 and P70 conditions in total 
number of SPC blocks (p = 1.00). A comparison of the no-pressure control with the aggregate of 
the two pressure conditions was significant [F(1,65) = 6.447, p = .014, partial η2 = 0.090]. These 
findings establish that individuals under performance pressure use reflexive strategies sooner and 
with greater regularity than individuals under no pressure conditions but that there are no 
performance differences between the two pressure conditions. 

General Discussion 
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This is the first study to examine the effects of performance pressure on non-native 
speech category learning. Within a dual-learning systems (DLS) framework, and based on a 
growing body of evidence (Chandrasekaran, et al., 2014a; Chandrasekaran, et al., 2014b; Maddox 
& Chandrasekaran, 2014; Maddox, et al., 2013; Maddox, et al., 2014; Yi, et al., 2014), we posited 
that non-native speech (Mandarin tone) category learning is mediated by an automatic, procedural 
reflexive system. A successful theory of the effects of pressure on cognitive processing is the 
distraction hypothesis (Beilock, et al., 2004; Beilock & Carr, 2005; Markman, et al., 2006). The 
distraction hypothesis suggests that performance pressure shifts the balance between reflective 
and reflexive processing toward reflexive processing by reducing available executive function 
processes, and thus the effectiveness of reflective processing. The distraction hypothesis predicts 
that pressure should attenuate reflective-optimal (rule-based) learning but should enhance 
reflexive-optimal (information-integration) learning. This pattern has been observed with 
experimenter defined category structures and simple perceptual stimuli presented in the visual 
domain (e.g., Gabor patches that vary in frequency and orientation) (DeCaro, et al., 2011; 
Markman, et al., 2006; McCoy, et al., 2014). Support for the distraction hypothesis in the visual 
category learning literature, along with recent evidence to suggest that non-native speech learning 
is mediated by the reflexive system, led us to predict that performance pressure would enhance 
non-native speech (Mandarin tone) category learning through early and more frequent use of 
reflexive strategies. As predicted, we found an advantage in Mandarin tone category learning for 
individuals under performance pressure. Neurobiologically-motivated computational model-
based analyses suggested that the locus of this performance advantage was due to faster, and 
more frequent, use of reflexive-processing strategies. The implications of this work are many. We 
briefly discuss some of these below. 
Individual Differences in Learning Success 

Laboratory speech training research often attributes the large individual differences in 
learning success to perceptual abilities, genetics, cognitive factors, and listening experience 
(Chandrasekaran, et al., 2015; Perrachione, et al., 2011) . We demonstrate that situational factors, 
such as performance pressure, can also significantly alter learning strategies, and consequently, 
performance, contributing to the individual differences in speech learning success. The proposed 
role of situational factors may explain how a videogame paradigm could achieve robust non-
native speech learning comparable with a much longer multi-week laboratory-based training 
paradigm (Lim & Holt, 2011), which may reflect a combination of greater performance pressure, 
incentive to learn, mediating faster shift to optimal procedural-based learning strategies.  

Although we found robust effects of pressure on performance, we found few performance 
differences between the P65 and P70 conditions. This was not unexpected since we chose these 
two values because average performance in our previous work reached asymptote at 65-70% 
accuracy (Chandrasekaran, et al., 2014a). Even so, performance in the P70 condition was slightly 
worse than that in the P65 condition. Performance pressure influences behavior when the target 
performance level is not too easy and not too hard (Maddox & Markman, 2010; Markman, et al., 
2006). It is likely that the P65 condition satisfies these conditions slightly better than the P70 
condition leading to slightly better performance in the P65 condition. Clearly more work is 
needed though that explores a broader range of performance levels. 
Other Manipulations of Performance Pressure and Performance 

Although the present study is the first to examine the effects of pressure on speech 
category learning, it represents one of several that have explored the effects of pressure and stress 
on the balance of processing in the reflexive and reflective systems (DeCaro, et al., 2011; 
Markman, et al., 2006; McCoy, et al., 2014). Recent work by DeCaro, McCoy and colleagues 
suggests that the nature of the performance pressure manipulation has a large effect on the 
balance of reflective and reflexive processing (DeCaro, et al., 2011; McCoy, et al., 2014). In 
particular, whereas they found that the performance pressure manipulation used here does lead to 
enhanced reflexive processing, they found that other pressure manipulations, in particular those 



Performance pressure and speech learning 14 

that enhance explicit monitoring, were more likely to enhance reflective processing. Thus, it is 
important to be clear that the effects of pressure are complex and depend upon the specifics of the 
pressure manipulation as well as the nature of the learning system that optimizes performance. 
Future work should examine a broader range of pressure manipulations and explore their effects 
on Mandarin tone learning as well as other speech category learning domains. 
Implications for Education 
 Although the results presented in this research report are intriguing, it is highly premature 
at this stage to make any strong claims about the implications of this work for educational settings. 
The present study used a well-vetted laboratory manipulation of pressure and a highly studied 
form of non-native speech learning (Mandarin tone learning) for which strong evidence exists to 
suggest that learning is optimally mediated by the reflexive system. Other pressure manipulations 
can have different effects on system level processing and other learning tasks (including other 
forms of speech learning) may not be so simply characterized as reflexive- or reflective-optimal. 
Even so, with more basic and applied research we may be able (in the future) to identify 
conditions under which certain forms of pressure (even high stakes testing) are advantageous. 
Individual Differences in Trait Variables 
 The research presented here completely ignores personality and trait factors of the 
individual. Clearly these factors influence how an individual approaches a task as well as their 
inherent balance of reflexive and reflective processing. We have begun to explore this in our 
speech learning work with some interesting consequences. As just one example, we argued that 
the presence of elevated depressive symptoms leads to a shift in balance toward the reflexive 
system. Thus, just as we predicted for performance pressure, we predicted, and found support for 
the claim, that elevated depressive symptoms should lead to enhanced speech learning (Maddox, 
et al., 2014). Future research should extend this to other populations that differ in personality 
traits and should incorporate situational manipulations such as performance pressure (Maddox & 
Markman, 2010). 
Pressure and Motivation 
 Early in the introduction to this report we stated that performance pressure affects 
“motivation” but that we wanted to avoid that term and instead focus was on performance 
pressure. In this section we want to briefly discuss the implications of our work for motivation. 
Motivation broadly defined is critical to nearly all behavior. It follows that motivation is highly 
complex and as such is not well understood.  We argue that pressure is a form of “global” 
situational motivation. Previous research suggests that a person’s global motivational focus 
interacts with the local trial-by-trial motivation (Higgins, 2000; Maddox & Markman, 2010). For 
example, when the global motivation is to approach something positive (such as a monetary 
bonus) and the trial-by-trial motivation is to obtain positive things (such as points), there is a 
regulatory match. Previous research suggests that this leads to enhanced processing in the 
reflective system (Maddox & Markman, 2010). On the other hand, if the global motivation is to 
avoid losing something desirable (such as an already obtained bonus, or disappointing a partner 
who did their job) and the trial-by-trial motivation is to obtain points, there is a regulatory 
mismatch that leads to enhanced processing in the reflexive system (Maddox & Markman, 2010). 
Maddox and Markman argue that pressure represents a mixture of a global situational approach 
motivation (to obtain a monetary bonus) with a global social avoidance motivation (not to 
disappoint the partner). Future work should disentangle these global motivational effects and 
examine how they interact with local motivational effects. This would lead to a more complete 
understanding of the broader motivational framework and its effects on speech learning. 
Motivation and Second Language Learning 
 Seminal work by Gardner (Gardner, 1985, 2007) and others (Dornyei, 1994; Dornyei & 
Otto, 1998) have examined the relationship between motivation and second language learning. 
For example, Gardner (Gardner, 2007) posits four stages of language acquisition (elemental, 
consolidation, conscious expression, and automaticity) and two types of motivational processes 
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(language learning motivation and classroom motivation). Although a detailed discussion of this 
important work is beyond the scope of this article, some integration of our results into this 
broader framework is possible. Gardner argues for the importance of motivation in second 
language learning and states explicitly that its effect is more complex than simply wanting to 
learn the language. Our work examining the effects of pressure, and the broader motivation 
framework incorporating global and local aspects of motivation outlined above, clearly supports 
this claim. In our view, “wanting to learn” something implies the goal of “trying harder”. Trying 
harder most likely involves conscious effort and utilization of working memory and executive 
attention; in other words, reflective learning processes. Our study suggests that the form of social 
pressure utilized here shifts the balance of processing away from reflective toward reflexive 
processing. Future work should explore how pressure in general, and social pressure in particular, 
influences the various stages of language acquisition. It is possible that the effects are quite 
different if pressure is introduced at the elemental stage versus the conscious expression stage. 
Conclusions 

This represents the first study to examine the effects of performance pressure on speech 
category learning. As predicted from our application of dual-learning system theory to speech 
category learning and from the extensive literature suggesting that pressure enhances reflexive 
processing, we predicted that performance pressure would enhance speech category learning. In 
support of our prediction, we found that pressure enhanced speech category learning with the 
computational modeling suggesting that this performance advantage was due to faster and more 
frequent use of reflexive category learning strategies. 
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Figure 1. (A) Example of trials in which subjects are shown a stimulus until responding, 
then given 1000ms of feedback, followed by a 1000ms ITI.  Three trials are shown. (B) 
Example of a rule-based category learning task in which narrow bar width Gabor patches 
are in category A and wide bar width Gabor patches are in category B. (C) Example of an 
information-integration category learning task in which no verbalizable rule can be used 
to describe the strategy that maximizes accuracy.  
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Figure 2. (A) Scatterplot of all stimuli from the experiment. (B) Scatterplot of male-talker stimuli. 
(C) Scatterplot of female-talker stimuli. Stimuli dimensions (Pitch Height and Pitch Direction) 
were normalized between 0 and 1. Scatterplots of the responses along with the decision 
boundaries that separate response regions from a hypothetical participant using a version of the: 
(D) reflexive, Striatal Pattern Classifier, (E) reflective, Conjunctive rule-based, (F) reflective, 
Uni-Dimensional_Height rule-based, and (G) reflective, Uni-Dimensional_Direction rule-based 
models as applied to the female talker stimuli shown in panel C. 
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Figure 3. Learning curves across the P70 (dotted line), P65 (solid grey line), and no-pressure 
control (solid black line) conditions. Each data point on each curve was generated by averaging 
the accuracy across the previous 80 trials of data (i.e., using a sliding 80-trial uniform kernel). For 
example, the accuracy rate associated with trial 100 was generated by averaging the accuracy 
rates on trials 21-100. The only exceptions are the trials prior to trial 80. For those we used a 
cumulative average. For example, the accuracy rate associated with trial 60 was generated by 
averaging the accuracy rates on trials 1-60.  
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Figure 4. (left) Block during which no-pressure control, P65 and P70 participants first used a 
strategy consistent with reflexive processing (i.e., the SPC). (right) Total number of blocks during 
which no-pressure control, P65 and P70 participants used a strategy consistent with reflexive 
processing. Standard error bars included. 95% Confidence intervals: First SPC block: no pressure 
control (3.681, 5.319), P65 (1.716, 3.584), and P70 (2.136, 3.959). Confidence intervals: Total 
SPC block: no pressure control (1.308, 2.846), P65 (2.473, 4.227), and P70 (2.430, 4.142). 
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